Chapter 2 Multi Criteria Decision Making Springer

Multi-Criteria Decision Making (MCDM) has been one of the fastest growing problem areas in many disciplines. The central problem is how to evaluate a set of alternatives in terms of a number of criteria. Although this problem is very relevant in practice, there are few methods available and their quality is hard to determine. Thus, the question "Which is the best method for a given problem?" has become one of the most important and challenging ones. This is exactly what this book has as its focus and why it is important. The author extensively compares, both theoretically and empirically, real-life MCDM issues and makes the reader aware of quite a number of surprising "anomalies" with some of these methods. What makes this book so valuable and different is that even though the analyses are rigorous, the results can be understood even by the non-specialist. Audience: Researchers, practitioners, and students; it can be used as a textbook for senior undergraduate or graduate courses in business and engineering.

This book focuses on two of the most important aspects of wind farm operation: decisions and control. The first part of the book deals with decision-making processes, and explains that hybrid wind farm operation is governed by a set of alternatives that the wind farm operator must choose from in order to achieve optimal delivery of wind power to the utility grid. This decision-making is accompanied by accurate forecasts of wind speed, which must be known beforehand. Errors in wind forecasting can be compensated for by pumping power from a reserve capacity to the grid using a battery energy storage system (BESS). Alternatives based on penalty cost are assessed using certain criteria, and MCDM methods are used to evaluate the best choice. Further, considering the randomness in the dynamic phenomenon in wind farms, a fuzzy MCDM approach is applied during the decision-making process to evaluate the best alternative for hybrid wind farm operation. Case studies from wind farms in the USA are presented, together with numerical solutions to the problem. In turn, the second part deals with the control aspect, and especially with yaw angle control, which facilitates power maximization at wind farms. A novel transfer function-based methodology is presented that controls the wake center of the upstream turbine(s); lidar-based numerical simulation is carried out for wind farm layouts; and an adaptive control strategy is implemented to achieve the desired yaw angle for upstream turbines. The proposed methodology is tested for wind farm layouts. Wake management is also implemented for hybrid wind farms where BESS life enhancement is studied. The effect of yaw angle on the operational cost of BESS is assessed, and case studies for wind farm datasets from the USA and Denmark are discussed. Overall, the book provides a comprehensive guide to decision and control aspects for hybrid wind farms, which are particularly important from an industrial standpoint.

Examines the development of methodologies for network and project level optimization of multiple, user-specified bridge management performance criteria. The report also explores the development of bridge management software modules to implement the methodologies. The report includes software modules, a user's manual, and demonstration database as part of an accompanying CD-ROM, which is available for download as an ISO image.

The purpose of this book is to provide a resource for students and researchers that includes current application of a multi-criteria, decision-making theory in various fields such as: environment, healthcare and engineering. In addition, practical application are shown for students manually. In real life problems there are many critical parameters (criteria) that can directly or indirectly affect the consequences of different decisions. Application of a multi-criteria, decision-making theory is basically the use of computational methods that incorporate several criteria and order of preference in evaluating and selecting the best option among many alternatives based on the desired outcome.

This book presents various multi-criteria analysis methods for sustainability-oriented analysis and decision-making for energy systems, under various different conditions and scenarios. It presents methodologies to answer the questions relating to which of the options are the most sustainable among the alternatives, and how multi-criteria decision analysis methods can be used to select the most sustainable energy systems. A systematic innovative methodological framework is presented, which enables the most appropriate energy system to be selected under different conditions including: Scientific decision support tools for sustainable energy system selection; Fuzzy, grey, and rough sets based multi-criteria decision analysis; Decision-making models under uncertainties; and The combination of life cycle thinking and multi-criteria decision analysis This book is of interest to researchers, engineers, decision makers, and postgraduate students within the field of energy systems, sustainability, and multi-criteria decision analysis. Decision Making is a book where each chapter has been contributed to by a different author(s). The book synthesizes the analytical principles with business practice of Decision Making. Specifically, the book provides an interface between the main disciplines of engineering/technology and the organizational, administrative, and planning abilities of decision making. It is complementary to other sub-disciplines such as economics, finance, marketing, decision and risk analysis, etc. The chapters introduce and demonstrate decision making theory in practical case studies. It demonstrates key results for each sector with diverse real-world case studies. The theory is accompanied by relevant analysis techniques, with a progressional approach building from simple theory to complex and dynamic decisions with multiple data points, including big data, etc. Computational techniques, dynamic analysis, probabilistic methods, and mathematical optimization techniques are expertly blended to support analysis of multi-criteria decision-making problems with defined constraints and requirements. Multi-criteria decision making (MCDM) has been extensively used in diverse disciplines, with a variety of MCDM techniques used to solve complex problems. A primary challenge faced by research scholars is to decode these techniques using detailed step-by-step analysis with case studies and data sets. The scope of such work would help decision makers to understand the process of using MCDM techniques appropriately to solve complex issues without making mistakes. Multi-Criteria Decision Analysis in Management provides innovative insights into the rationale behind using MCDM techniques to solve decision-making problems and provides comprehensive discussions on these techniques from their inception, development, and growth to their advancements and applications. The content within this publication examines hybrid multicriteria models, value theory, and data envelopment. Ideal for researchers, management professionals, students, operations scholars, and academicians, this scholarly work supports and enhances the decision-making process.


This latest Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) will again form the standard reference for all those concerned with climate change and its
consequences, including students, researchers and policy makers in environmental science, meteorology, climatology, biology, ecology, atmospheric chemistry and environmental policy. With almost every business application process being linked with a web portal, the website has become an integral part of any organization. Satisfying the end user’s needs is one of the key principles of designing an effective website. Because there are different users for any given website, there are different criteria that users want. Thus, evaluating a website is a multi-criteria decision-making problem in which the decision maker’s opinion should be considered for ranking the website. Multi-Criteria Decision-Making Models for Website Evaluation is a critical scholarly resource that covers the strategies needed to evaluate the navigability and efficacy of websites as promotional platforms for their companies. Featuring a wide range of topics including linguistic modelling, e-services, and site quality, this book is ideal for managers, executives, website designers, graphic artists, specialists, consultants, educationalists, researchers, and students.

The research presented in this book shows how combining deep neural networks with a special class of fuzzy logical rules and multi-criteria decision tools can make deep neural networks more interpretable — and even, in many cases, more efficient. Fuzzy logic together with multi-criteria decision-making tools provides very powerful tools for modeling human thinking. Based on their common theoretical basis, we propose a consistent framework for modeling human thinking by using the tools of all three fields: fuzzy logic, multi-criteria decision-making, and deep learning to help reduce the black-box nature of neural models; a challenge that is of vital importance to the whole research community. Multiple Criteria Decision Making (MCDM) is a subfield of Operations Research, dealing with decision making problems. A decision-making problem is characterized by the need to choose one or a few among a number of alternatives. The field of MCDM assumes special importance in this era of Big Data and Business Analytics. In this volume, the focus will be on modelling-based tools for Business Analytics (BA), with exclusive focus on the sub-field of MCDM within the domain of operations research. The book will include an Introduction to Big Data and Business Analytics, and challenges and opportunities for developing MCDM models in the era of Big Data.

Decision analysis has become widely recognized as an important process for translating science into management actions. With climate change and other systemic threats as driving forces in creating environmental and engineering problems, there is a great need for understanding decision making frameworks through a case-study based approach. Management of environmental and engineering projects is often complicated and multidisciplinary in scope and nature, thus issues that arise can be difficult to solve analytically. Multiple-Criteria Decision Analysis: Case Studies in Engineering and the Environment provides detailed description of MCDA methods and tools and illustrates their applications through case studies focused on sustainability and system engineering applications. New in the Second Edition: Addresses current and emerging environmental and engineering problems Includes seven new case studies to illustrate different management situations applicable at the international level Builds on real case studies from recent and relevant environmental and engineering management experience Describes advanced MCDM techniques and extensions used by practitioners Provides corresponding decision models implemented using the DECERNS software package Gives a more holistic approach to teaching MCDA methodology with a focus on sustainable solutions and adoption of new technologies, including nanotechnology and synthetic biology Given the novelty and inherent applicability of this decision-making framework to the environmental and engineering fields, a greater number of teaching tools for this topic need to be made available. This book provides those teaching tools, covering the breadth of the applications of MCDA methodologies with clear explanations of the MCDA process. The case studies are implemented in the DECERNS software package, allowing readers to experiment and explore and to understand the full process by which environmental managers assess these problems. This book is a great resource for professionals and students seeking to learn decision analysis techniques and apply similar frameworks to environmental and engineering projects.

Given the increasing need to optimize resources sustainably, decision-makers face challenges in analyzing and considering the numerous factors involved. This book makes an effort to present and concentrate on the challenges in decision-making processes for green and sustainable engineering. Through a collection of case studies such as evaluation of waste assessment and drainage system, sustainable building assessment, renewable energy selection, materials and manufacturing process optimization, and crop pattern influence in environmental and economic conditions, readers can learn how to apply cutting-edge Multiple-Criteria Decision Making (MCDM) methods in addressing complexities involved in the decision-making process. Providing useful insights on the use of Multi-Criteria Decision Analysis (MCDA) in natural resource management, this book examines a number of empirical applications for several countries and a variety of natural resources. This book gives in-depth analysis of the potential problems in applying MCDA techniques, including difficulties eliciting required information, lack of suitable measures for environmental variables and the need to develop innovative methods to simplify the use of MCDA. This book covers various multi-criteria decision-making (mcdm) methods for modeling and optimization of advanced manufacturing processes (AMPS). Processes such as non-conventional machining, rapid prototyping, environmentally conscious machining and hybrid machining are finally put together in a single book. It highlights the research advances and discusses the published literature of the last 15 years in the field. Case studies of real life manufacturing situations are also discussed. This book describes a wide range real-case applications of Multi-Criteria Decision Making (MCDM) in maritime related subjects including shipping, port, maritime logistics, cruise ports, waterfront developments, and shipping finance, etc. In such areas, researchers, students and industrialists, in general, felt struggling to find a step-by-step guide on how to apply MCDM to formulate effective solutions to solving real problems in practice. This book focuses on the in-depth analysis and applications of the most well-known MDCM methodologies in the aforementioned areas. It brings together an eclectic collection of twelve chapters which seek to respond to these challenges. The book begins with an introduction and is followed by an overview of major MCDM techniques. The next chapter examines the theory of analytic hierarchy process (AHP) in detail and investigates a fuzzy AHP (FAHP) approach and its capability and rationale in dealing with decision problems of ambiguous information. Chapter 4 proposes a generic methodology to identify the key factors influencing green shipping and to establish an evaluation system for the assessment of shipping greenness. In Chapter 5, the authors describe a new function of fuzzy Evidential Reasoning (ER) to improve the vessel selection process in which multiple criteria with insufficient and ambiguous information are evaluated and synthesized. Chapter 6 presents a novel methodology by using an Artificial Potential Field (APF) model and the ER approach to estimate the collision probabilities of monitoring targets for coastal radar surveillance. Chapter 7 develops the inland port performance assessment model (IPPAM)
using a hybrid of AHP, ER and a utility function. The next chapter showcases a challenging approach to address the risk and uncertainty in LNG transfer operations, by utilizing a Stochastic Utility Additives (UTA) method with the help of the philosophy of aggregation–disaggregation coupled with a robustness control procedure. Chapter 9 uses Entropy and Grey Relation Analysis (GRA) to analyze the relative weights of financial ratios through the case studies of the four major shipping companies in Korea and Taiwan: Evergreen, Yang Ming, Hanjin and Hyundai Merchant Marine. Chapter 10 systemically applies modern heuristics to solving MCDM problems in the fields of operation optimisation in container terminals. Arguing that bunkering port selection is typically a multi-criteria group decision problem, and in many practical situations, decision makers cannot form proper judgments using incomplete and uncertain information in an environment with exact and crisp values, in Chapter 11, the authors propose a hybrid Fuzzy-Delphi-TOPSIS based methodology with a sensitivity analysis. Finally, Chapter 12 deals with a new conceptual port performance indicators (PPIs) interdependency model using a hybrid approach of a fuzzy logic based evidential reasoning (FER) and a decision making trial and evaluation laboratory (DEMATEL).

Decision makers in the Renewable Energy sector face an increasingly complex social, economic, technological, and environmental scenario in their decision process. Different groups of decision-makers become involved in the process, each group bringing along different criteria therefore, policy formulation for fossil fuel substitution by Renewable Energies must be addressed in a multi-criteria context. Multi Criteria Analysis in the Renewable Energy Industry is a direct response to the increasing interest in the Renewable Energy industry which can be seen as an important remedy to many environmental problems that the world faces today. The multiplicity of criteria and the increasingly complex social, economic, technological, and environmental scenario makes multi-criteria analysis a valuable tool in the decision-making process for fossil fuel substitution. The detailed chapters explore the use of the Multi-criteria decision-making methods and how they provide valuable assistance in reaching equitable and acceptable solutions in the selection of renewable energy projects. Common multi-criteria decision-making methods including Analytical Hierarchy Process, PROMETHEE, ELECTRE, TOPSIS and VIKOR are explored in detail with an application case of each method included at the end of each chapter. As such, Multi Criteria Analysis in the Renewable Energy Industry is an ideal resource for those groups of individuals, institutions and administration such as local authorities, academic institutions, environmental groups, and governments that, through their priorities and evaluation systems, have interests at stake and directly or indirectly influence the decision-making process.

This book offers a comprehensive guide to the use of neutrosophic sets in multiple criteria decision making problems. It shows how neutrosophic sets, which have been developed as an extension of fuzzy and paraconsistent logic, can help in dealing with certain types of uncertainty that classical methods could not cope with. The chapters, written by well-known researchers, report on cutting-edge methodologies they have been developing and testing on a variety of engineering problems. The book is unique in its kind as it reports for the first time and in a comprehensive manner on the joint use of neutrosophic sets together with existing decision making methods to solve multi-criteria decision-making problems, as well as other engineering problems that are complex, hard to model and/or include incomplete and vague data. By providing new ideas, suggestions and directions for the solution of complex problems in engineering and decision making, it represents an excellent guide for researchers, lecturers and postgraduate students pursuing research on neutrosophic decision making, and more in general in the area of industrial and management engineering.

This Brief highlights a novel model to find out the feasibility of any location to produce solar energy. The model utilizes the latest multi-criteria decision making techniques and artificial neural networks to predict the suitability of a location to maximize allocation of available energy for producing optimal amount of electricity which will satisfy the demand from the market. According to the results of the case studies further applications are encouraged. This book presents an introduction to MCDA followed by more detailed chapters about each of the leading methods used in this field. Comparison of methods and software is also featured to enable readers to choose the most appropriate method needed in their research. Worked examples as well as the software featured in the book are available on an accompanying website. In this book we introduce a new procedure called ?-Discounting Method for Multi-Criteria Decision Making (?-D MCDM), which is as an alternative and extension of Saaty's Analytical Hierarchy Process (AHP).

This book examines multiple criteria decision making (MCDM) and presents the Sequential Interactive Modelling for Urban Systems (SIMUS) as a method to be used for strategic decision making. It emphasizes the necessity to take into account aspects related to real world scenarios and incorporating possible real life aspects for modelling. The book also highlights the use of sensitivity analysis and presents a method for using criteria marginal values instead of weights, which permits the drawing of curves that depicts the variations of the objective function due to variations of these marginal values. In this way it also gives quantitative values of the objective function allowing stakeholders to perform a comprehensive risk analysis for a solution when it is affected by exogenous variables. Strategic Approach in Multi-Criteria Decision Making: A Practical Guide for Complex Scenarios is divided into three parts. Part 1 is devoted to exploring the history and development of the discipline and the way it is currently used. It highlights drawbacks and problems that scholars have identified in different MCDM methods and techniques. Part 2 addresses best practices to assure quality MCDM process. Part 3 introduces the concept of Linear Programming and the proposed SIMUS method as techniques to deal with MCDM. It also includes case studies in order to help document and illustrate difficult concepts, especially related to demands from a scenario and also in their modelling. The decision making process can be a complex task, especially with multi-criteria problems. With large amounts of information, it can be an extremely difficult to make a rational decision, due to the number of intervening variables, their interrelationships, potential solutions that might exist, diverse objectives envisioned for a project, etc. The SIMUS method has been designed to offer a strategy to help organize, classify, and evaluate this information effectively.

This book presents a broad range of innovative applications and case studies in all areas of management and engineering, including public administration, finance, marketing, engineering, transportation, and energy systems. It addresses issues related to problem structuring, preference modeling, and model construction, presenting a framework that provides clear decision-making support in practice. In addition, it includes hybrid and integrated techniques combining multiple criteria decision making (MCDM) with other analytical methods. The book reflects the
This book addresses the problem of waste management by using multi-criteria decision-making (MCDM) methods. The authors discuss how to apply MCDM, a complex decision-making tool that involves both quantitative and qualitative factors, to develop strategies for effective waste management using various optimization models to rank alternatives, while also incorporating the concerns and needs of multiple stakeholders to find the most optimal decisions for various types of wastes. Typically, there does not exist a single optimal solution to waste problems; with help of MCDM, far better solutions can often be found and utilized to facilitate sustainable waste management techniques in various industries. This book provides unique, effective, and quick decision-making strategies for waste management. With the ever-increasing population and continuing human development, the problem of managing waste becomes increasingly essential, and this volume helps lead the way to finding sustainable solutions.

This work examines all the fuzzy multicriteria methods recently developed, such as fuzzy AHP, fuzzy TOPSIS, interactive fuzzy multiobjective stochastic linear programming, fuzzy multiobjective dynamic programming, grey fuzzy multiobjective optimization, fuzzy multiobjective geometric programming, and more. Each of the 22 chapters includes practical applications along with new developments/results. This book may be used as a textbook in graduate operations research, industrial engineering, and economics courses. It will also be an excellent resource, providing new suggestions and directions for further research, for computer programmers, mathematicians, and scientists in a variety of disciplines where multicriteria decision making is needed.

The book covers the domain of multi-criteria decision making, a topic which has gained significant attention of researchers and practitioners spanning a variety of disciplines for enhancing their decision making in real life situation. The topics in this volume help readers understand the techniques in the model building and analysis stage. The chapters cover a variety of techniques and their applications for interesting problems. This book will be of interest to readers in diverse disciplines such as engineering, business, management, humanities, psychology and law.

This book integrates multiple criteria concepts and methods for problems within the Risk, Reliability and Maintenance (RRM) context. The concepts and foundations related to RRM are considered for this integration with multicriteria approaches. In the book, a general framework for building decision models is presented and this is illustrated in various chapters by discussing many different decision models related to the RRM context. The scope of the book is related to ways of how to integrate Applied Probability and Decision Making. In Applied Probability, this mainly includes: decision analysis and reliability theory, amongst other topics closely related to risk analysis and maintenance. In Decision Making, it includes a broad range of topics in MCDM (Multi-Criteria Decision Making) and MCDA (Multi-Criteria Decision Aiding; also known as Multi-Criteria Decision Analysis). In addition to decision analysis, some of the topics related to Mathematical Programming area are briefly considered, such as multiobjective optimization, since methods related to these topics have been applied to the context of RRM. The book addresses an innovative treatment for the decision making in RRM, thereby improving the integration of fundamental concepts from the areas of both RRM and decision making. This is accomplished by presenting an overview of the literature on decision making in RRM. Some pitfalls of decision models when applying them to RRM in practice are discussed and guidance on overcoming these drawbacks is offered. The procedure enables multicriteria models to be built for the RRM context, including guidance on choosing an appropriate multicriteria method for a particular problem faced in the RRM context. The book also includes many research advances in these topics. Most of the multicriteria decision models that are described are specific applications that have been influenced by this research and the advances in this field. Multicriteria and Multiobjective Models for Risk, Reliability and Maintenance Decision Analysis is implicitly structured in three parts, with 12 chapters. The first part deals with MCDM/A concepts methods and decision processes. The second part presents the main concepts and foundations of RRM. Finally the third part deals with specific decision problems in the RRM context approached with MCDM/A models.

Multi-criteria Decision Analysis for Supporting the Selection of Engineering Materials in Product Design, Second Edition, provides readers with tactics they can use to optimally select materials to satisfy complex design problems when they are faced with the vast range of materials available. Current approaches to materials selection range from the use of intuition and experience, to more formalized computer-based methods, such as electronic databases with search engines to facilitate the materials selection process. Recently, multi-criteria decision-making (MCDM) methods have been applied to materials selection, demonstrating significant capability for tackling complex design problems. This book describes the rapidly growing field of MCDM and its application to materials selection. It aids readers in producing successful designs by improving the decision-making process. This new edition updates and expands previous key topics, including new chapters on materials selection in the context of design problem-solving and multiple objective decision-making, also presenting a significant amount of additional case studies that will aid in the learning process. Describes the advantages of Quality Function Deployment (QFD) in the materials selection process through different case studies. Presents a methodology for multi-objective material design optimization that employs Design of Experiments coupled with Finite Element Analysis. Supplements existing qualitative methods of materials selection by allowing simultaneous consideration of design attributes, component configurations, and types of material. Provides a case study for simultaneous materials selection and geometrical optimization processes.
The point of departure in the present book is that the decision makers, involved in the evaluation of alternatives under conflicting criteria, express their preferential judgement by estimating ratios of subjective values or differences of the corresponding logarithms, the so-called grades. Three MCDM methods are studied in detail: the Simple Multi-Attribute Rating Technique (SMART), as well as the Additive and the Multiplicative AHP, both pairwise-comparison methods which do not suffer from the well-known shortcomings of the original Analytic Hierarchy Process. Context-related preference modelling on the basis of psycho-physical research in visual perception and motor skills is extensively discussed in the introductory chapters. Thereafter, many extensions of the ideas are presented via case studies in university administration, health care, environmental assessment, budget allocation, and energy planning at the national and the European level. The issues under consideration are: group decision making with inhomogeneous power distributions, the search for a compromise solution, resource allocation and fair distributions, scenario analysis in long-term planning, conflict analysis via the pairwise comparison of concessions, and multi-objective optimization. The final chapters are devoted to the fortunes of MCDM in the hands of its designers. The research started in the late seventies, when I got involved in three different problems: the nomination procedures in a university, the evaluation of alternative energy-research proposals, and the evaluation of non-linear programming software. While there are many different models for performing system analysis, the multi-criteria decision making method has proven to be one of the most efficient. By analyzing the key concepts of this theory, the technique can be enhanced and will benefit future organizations and companies in novel ways. Multi-Criteria Decision Making for the Management of Complex Systems provides a comprehensive examination of the latest strategies and methods involved in decision theory. Featuring extensive coverage on relevant topics such as nested scalar convolutions, Pareto optimality, nonlinear schemes, and operator performance, this publication is ideally designed for engineers, students, professionals, academics, and researchers seeking innovative perspectives on the supervision of advanced decision making theories in system analysis. This book provides a systematic way of how to make better decisions in water resources management. The applications of three weighting methods namely rating, ranking, and ratio are discussed in this book. Additionally, data mining on keywords is presented using three popular scholarly databases: Science Direct, Scopus, and SciVerse. Four abbreviated keywords (MCDM, MCDM, MCA, MADM) representing multi-criteria decision-making were used and these three databases were searched for different popular weighting methods for a period of 13 years (2000-2012). The book provides also a review of weighting methods applied in various multi-criteria decision-making (MCDM) methods and also presents survey results on priority ranking of watershed management criteria undertaken by 30 undergraduate and postgraduate students from the Faculty of Civil Engineering, Universiti Teknologi Malaysia. Life Cycle Sustainability Assessment for Decision-Making: Methodologies and Case Studies gives readers a comprehensive introduction to life cycle sustainability assessment (LCSA) methodology for sustainability measurement of industrial systems, proposing an efficiency methodology for stakeholders and decision-makers. Featuring the latest methods and case studies, the book will assist researchers in environmental sciences and energy to develop the best methods for LCA, as well as aiding those practitioners who are responsible for making decisions for promoting sustainable development. The past, current status and future of LCSA, Life Cycle Assessment method (LCA), Life Cycle Costing (LCC), Social Life Cycle Assessment (SLCA), the methodology of LCSA, typical LCSA case studies, limitations of LCSA, and life cycle aggregated sustainability index methods are all covered in this multidisciplinary book. Includes models for assessing sustainability in environmental, energy engineering and economic scenarios Features case studies that help define the advantages and obstacles of real world applications Presents a complete view, from theory to practice, of a life cycle approach by exploring the methods and tools of sustainability assessment, analysis and design of sustainability assessment This book showcases a large variety of multiple criteria decision applications (MCDAs), presenting them in a coherent framework provided by the methodology chapters and the comments accompanying each case study. The chapters describing MCDAs invite the reader to experiment with MCDM methods and perhaps develop new variants using data from these case studies or other cases they encounter, equipping them with a broader perception of real-world problems and how to overcome them with the help of MCDAs. The field of multiple criteria decision analysis (MCDM), also termed multiple criteria decision aid, or multiple criteria decision making (MCDM), has developed rapidly over the past quarter century and in the process a number of divergent schools of thought have emerged. This can make it difficult for a new entrant into the field to develop a comprehensive appreciation of the range of tools and approaches which are available to assist decision makers in dealing with the ever-present difficulties of seeking compromise or consensus between conflicting inter ests and goals, i.e. the "multiple criteria". The diversity of philosophies and models makes it equally difficult for potential users of MCDM, i.e. management scientists and/or decision makers facing problems involving conflicting goals, to gain a clear understanding of which methodologies are appropriate to their particular context. Our intention in writing this book has been to provide a comprehensive yet widely accessible overview of the main streams of thought within MCDM. We aim to provide readers with sufficient awareness of the underlying philosophies and theories, understanding of the practical details of the methods, and insight into practice to enable them to implement any of the approaches in an informed manner. As the title of the book indicates, our emphasis is on developing an integrated view of MCDM, which we perceive to incorporate both integration of different schools of thought within MCDM, and integration of MCDM with broader management theory, science and practice. The objective of this document is to illustrate the ways in which Geographical Information Systems (GIS), remote sensing and mapping can play a role in the development and management of marine aquaculture. The perspective is global. The approach is to employ example applications that have been aimed at resolving many of the important issues in marine aquaculture. The underlying purpose is to stimulate the interest of individuals in the government, industry and educational sectors of marine aquaculture to make more effective use of these tools. A brief introduction to spatial tools and their use in the marine fisheries sector precedes the example applications. The most recent applications have
been selected to be indicative of the state of the art, allowing readers to make their own assessments of the benefits and limitations of use of these tools in their own disciplines. Also published in Chinese and Spanish.

From selecting sites for new hospitals, schools, and factories, to managing forests and rivers, to creating and maintaining highways and bridges, public and private organizations are often called on to make decisions on geographic questions that involve a multitude of alternatives and often conflicting evaluation criteria. This book presents a formal mechanism for dealing with these situations, capturing the information in a Geographic Information System and processing it to derive optimal recommendations for confronting these complex questions.

Applications of Multi-Criteria Decision-Making Theories in Healthcare and Biomedical Engineering contains several practical applications on how decision-making theory could be used in solving problems relating to the selection of best alternatives. The book focuses on assisting decision-makers (government, organizations, companies, general public, etc.) in making the best and most appropriate decision when confronted with multiple alternatives. The purpose of the analytical MCDM techniques is to support decision makers under uncertainty and conflicting criteria while making logical decisions. The knowledge of the alternatives of the real-life problems, properties of their parameters, and the priority given to the parameters have a great effect on consequences in decision-making. In this book, the application of MCDM has been provided for the real-life problems in health and biomedical engineering issues. Provides a comprehensive analysis and application multi-criteria decision-making methods Presents detail information about MCDM and their usage Covers state-of-the-art MCDM methods and offers applications of MCDM for health and biomedical engineering purposes.

Copyright: 9e16a3949155c8d79f275b71865fe7bf