operation and maintenance of component parts

Gas Turbines A Handbook Of Air Land And Sea Applications

Everything you wanted to know about industrial gas turbines for electric power generation in one source with hard-to-find, hands-on technical information.

Modern gas turbine power plants represent one of the most efficient and economic conventional power generation technologies suitable for large-scale and smaller scale applications. Alongside this, gas turbine systems operate with low emissions and are more flexible in their operational characteristics than other large-scale generation units such as steam cycle plants. Gas turbines are unrivalled in their superior power density (power-to-weight) and are thus the prime choice for industrial applications where size and weight matter the most. Developments in the field look to improve on this performance, aiming at higher efficiency generation, lower emission systems and more fuel-flexible operation to utilise lower-grade gases, liquid fuels, and gasified solid fuels/biomass. Modern gas turbine systems provides a comprehensive review of gas turbine science and engineering. The first part of the book provides an overview of gas turbine types, applications and cycles. Part two moves on to explore major components of modern gas turbine systems including compressors, combustors and turbogenerators. Finally, the operation and maintenance of modern gas turbine systems is discussed in part three. The section includes chapters on performance issues and modelling, the maintenance and repair of components and fuel flexibility. Modern gas turbine systems is a technical resource for power plant operators, industrial engineers working with gas turbine power plants and researchers, scientists and students interested in the field. Provides a comprehensive review of gas turbine systems and fundamentals of a cycle Examines the major components of modern systems, including compressors, combustors and turbines Discusses the

We've all lived through long hot summers with power shortages, brownouts, and blackouts. But at last, all the what-to-do and how-to-do it information you'll need to handle a full range of operation and maintenance tasks at your fingertips. Written by a power industry expert, Power Generation Handbook: Selection, Applications, Operation, Maintenance helps you to gain a thorough understanding of all components, calculations, and subsystems of the various types of gas turbines, steam power plants, co-generation, and combined cycle plants. Divided into five sections, Power Generation Handbook: Selection, Applications, Operation, Maintenance provides a thorough understanding of co-generation and combined cycle plants. Each of the components such as compressors, gas and steam turbines, heat recovery steam generators, condensers, lubricating systems, transformers, and generators are covered in detail. The selection considerations, operation, maintenance and economics of co-generation plants and combined cycles as well as emission limits, monitoring and governing systems will also be covered thoroughly. This all-in-one resource gives you step-by-step guidance on how to maximize the efficiency, reliability and longevity of your power generation plant.

This is the second revised and enhanced edition of the book Gas Turbine Design, Components and System Integration written by a world-renowned expert with more than forty years of active gas turbine R&D experience. It comprehensively treats the design of gas turbine components and their integration into a complete system. Unlike many currently available gas turbine handbooks that provide the reader with an overview without in-depth treatment of the subject, the current book is concentrated on a detailed aero-thermodynamics, design and off-deign performance aspects of individual components as well as the system integration and its dynamic operation. This new book provides practicing gas turbine designers and young engineers working in the industry with design material that the manufacturers would keep proprietary. The book is also intended to provide instructors of turbomachinery courses around the world with a powerful tool to assign gas turbine components as project and individual modules that are integrated into a complete system. Quoting many statements by the gas turbine industry professionals, the young engineers graduated from the turbomachinery courses offered by the author, had the competency of engineers equivalent to three to four years of industrial experience.

This book was developed directly from a series of Solar Turbines Incorporated internal short courses that were presented to an audience with a wide range of technical backgrounds, not necessarily related to turbomachinery. Thus, functional principles and physical understanding are emphasized, rather than the derivation of complicated mathematical equations. While the focus of this book is gas turbine theory, it is not intended to provide an in-depth knowledge of gas turbine aerodynamics or thermodynamics, nor is it intended to make the reader an expert in the field of turbomachinery. Readers will benefit from the many topics and theories that pertain to the subject matter. The text emphasizes simplified explanations of complex physical theories. Hopefully, readers will utilize this book to develop an appreciation of the many engineering disciplines that are involved in the design and analysis of gas turbines. Readers are also encouraged to further investigate a wide range of topics by studying more specific, subject-matter literature. This hallmark text on Gas Turbines covers all aspects of the subject. The topics have been explained right from the fundamentals so that even a beginner can comprehend the exposition. Various chapters such as Inlets and Nozzles, Blades, Environmental Considerations and Applications and Rocket Propulsion make the book complete. Theoretical descriptions of the topics is crisp and well organized without the presence of any superfluous content which is supported really well with the help of pedagogical features. This edition is a thoroughly revised and updated one. All in all a must read for the readers of Gas Turbines.

Pounder's Marine Diesel Engines and Gas Turbines, Tenth Edition, gives engineering cadets, marine engineers, ship operators and managers insights into currently available engines and auxiliary equipment and trends for the future. This new edition introduces new engine models that will be most commonly installed in ships over the next decade, as well as the latest legislation and pollutant emissions procedures. Since publication of the last edition in 2009, a number of emission control areas (ECAs) have been established

encountered in all the major components of the gas turbine.

by the International Maritime Organization (IMO) in which exhaust emissions are subject to even more stringent controls. In addition, there are now rules that affect new ships and their emission of CO2 measured as a product of cargo carried. Provides the latest emission control technologies, such as SCR and water scrubbers Contains complete updates of legislation and pollutant emission procedures Includes the latest emission control technologies and expands upon remote monitoring and control of engines Annotation A design textbook attempting to bridge the gap between traditional academic textbooks, which emphasize individual concepts and principles; and design handbooks, which provide collections of known solutions. The airbreathing gas turbine engine is the example used to teach principles and methods. The first edition appeared in 1987. The disk contains supplemental material. Annotation c. Book News, Inc., Portland, OR (booknews.com).

This comprehensive Handbook has been fully updated and expanded for the second edition. It covers all major aspects of power plant design, operation, and maintenance. The second edition includes not only an updating of the technology, which has taken great leaps forward in the last decade, but also introduces new subjects such as Carbon Sequestration Technology, Chemical Treatment of Water used in Combined Cycle Power Plants, and extended treatments on Steam Turbines and Heat Recovery Steam Generators. A new Chapter has been introduced entitled, "Case Histories of Problems Encountered in Cogeneration and Combined Cycle Power Plants." This is an extensive treatise with 145 figures and photographs illustrating the many problems associated with Combined Cycle Power Plants and some of the solutions that have enabled plants to achieved higher efficiencies and reliability. This new edition assimilates subject matter of various papers, and sometimes diverse views, into a comprehensive, unified treatment of Combined Cycle Power Plants. Illustrations, with curves and tables are extensively employed to broaden the understanding of the descriptive text. The book has many special features which include comparison of various energy systems, latest cycles and power augmentation and improved efficiency techniques. All the major plant equipment used in Combined Cycle and Cogeneration Power Plants has been addressed.

Covering basic theory, components, installation, maintenance, manufacturing, regulation and industry developments, Gas Turbines: A Handbook of Air, Sea and Land Applications is a broad-based introductory reference designed to give you the knowledge needed to succeed in the gas turbine industry, land, sea and air applications. Providing the big picture view that other detailed, data-focused resources lack, this book has a strong focus on the information needed to effectively decision-make and plan gas turbine system use for particular applications, taking into consideration not only operational requirements but long-term life-cycle costs in upkeep, repair and future use. With concise, easily digestible overviews of all important theoretical bases and a practical focus throughout, Gas Turbines is an ideal handbook for those new to the field or in the early stages of their career, as well as more experienced engineers looking for a reliable, one-stop reference that covers the breadth of the field. Covers installation, maintenance, manufacturer's specifications, performance criteria and future trends, offering a rounded view of the area that takes in technical detail as well as industry economics and outlook Updated with the latest industry developments, including new emission and efficiency regulations and their impact on gas turbine technology Over 300 pages of new/revised content, including new sections on microturbines, non-conventional fuel sources for microturbines, emissions, major developments in aircraft engines, use of coal gas and superheated steam, and new case histories throughout highlighting component improvements in all systems and sub-systems. Gas turbines engineering handbook focuses on the design, fabrication, installation, operation, and maintenance of gas turbines. The third edition has added a new chapter that examines the case histories of gas turbines from deterioration of the performance of gas turbines to failures

The book is written for engineers and students who wish to address the preliminary design of gas turbine engines, as well as the associated performance calculations, in a practical manner. A basic knowledge of thermodynamics and turbomachinery is a prerequisite for understanding the concepts and ideas described. The book is also intended for teachers as a source of information for lecture materials and exercises for their students. It is extensively illustrated with examples and data from real engine cycles, all of which can be reproduced with GasTurb (TM). It discusses the practical application of thermodynamic, aerodynamic and mechanical principles. The authors describe the theoretical background of the simulation elements and the relevant correlations through which they are applied, however they refrain from detailed scientific derivations.

Presents the fundamentals of the gas turbine engine, including cycles, components, component matching, and environmental considerations.

Newly revised and comprehensive information on aircraft gas turbine powerplants and updated coverage of jet engine technology. Extensive cross-reference between today's aircraft and engines. Now includes over 500 illustrations, charts and tables. Written by Otis and Vosbury. ISBN# 0-88487-311-0. 514 pages.

Gas-Turbine Power Generation is a concise, up-to-date, and readable guide providing an introduction to gas turbine power generation technology. It includes detailed descriptions of gas fired generation systems, demystifies the functions of gas fired technology, and explores the economic and environmental risk factors Engineers, managers, policymakers and those involved in planning and delivering energy resources will find this reference a valuable guide that will help them establish a reliable power supply as they also account for both social and economic objectives. Provides a concise, up-to-date, and readable guide on gas turbine power generation technology Focuses on the evolution of gas-fired power generation using gas turbines Evaluates the economic and environmental viability of the system with concise diagrams and accessible explanations

A significant addition to the literature on gas turbine technology, the second edition of Gas Turbine Performance is a lengthy text covering product advances and technological developments. Including extensive figures, charts, tables and formulae, this book will interest everyone concerned with gas turbine technology, whether they are designers, marketing staff or users.

The Gas Turbine Engineering Handbook has been the standard for engineers involved in the design, selection, and operation of gas turbines. This revision includes new case histories, the latest techniques, and new designs to comply with recently passed legislation. By keeping the book up to date with new, emerging topics, Boyce ensures that this book will remain the standard and most widely used book in this field. The new Third Edition of the Gas Turbine Engineering Hand Book updates the book to cover the new generation of Advanced gas Turbines. It examines the benefit and some of the major problems that have been encountered by these new turbines. The book keeps abreast of the environmental changes and the industries answer to these new regulations. A new chapter on case histories has been added to enable the engineer in the field to keep abreast of problems that are being encountered and the solutions that have resulted in solving them. Comprehensive treatment of Gas Turbines from Design

to Operation and Maintenance. In depth treatment of Compressors with emphasis on surge, rotating stall, and choke; Combustors with emphasis on Dry Low NOx Combustors; and Turbines with emphasis on Metallurgy and new cooling schemes. An excellent introductory book for the student and field engineers A special maintenance section dealing with the advanced gas turbines, and special diagnostic charts have been provided that will enable the reader to troubleshoot problems he encounters in the field The third edition consists of many Case Histories of Gas Turbine problems. This should enable the field engineer to avoid some of these same generic problems

Reflecting the developments in gas turbine combustion technology that have occurred in the last decade, Gas Turbine Combustion: Alternative Fuels and Emissions, Third Edition provides an up-to-date design manual and research reference on the design, manufacture, and operation of gas turbine combustors in applications ranging from aeronautical to power generation. Essentially self-contained, the book only requires a moderate amount of prior knowledge of physics and chemistry. In response to the fluctuating cost and environmental effects of petroleum fuel, this third edition includes a new chapter on alternative fuels. This chapter presents the physical and chemical properties of conventional (petroleum-based) liquid and gaseous fuels for gas turbines; reviews the properties of alternative (synthetic) fuels and conventional-alternative fuel blends; and describes the influence of these different fuels and their blends on combustor performance, design, and emissions. It also discusses the special requirements of aircraft fuels and the problems encountered with fuels for industrial gas turbines. In the updated chapter on emissions, the authors highlight the quest for higher fuel efficiency and reducing carbon dioxide emissions as well as the regulations involved. Continuing to offer detailed coverage of multifuel capabilities, flame flashback, high off-design combustion efficiency, and liner failure studies, this best-selling book is the premier guide to gas turbine combustion technology. This edition retains the style that made its predecessors so popular while updating the material to reflect the technology of the twenty-first century.

This book written by a world-renowned expert with more than forty years of active gas turbine R&D experience comprehensively treats the design of gas turbine components and their integration into a complete system. Unlike many currently available gas turbine handbooks that provide the reader with an overview without in-depth treatment of the subject, the current book is concentrated on a detailed aero-thermodynamics, design and off-deign performance aspects of individual components as well as the system integration and its dynamic operation. This new book provides practicing gas turbine designers and young engineers working in the industry with design material that the manufacturers would keep proprietary. The book is also intended to provide instructors of turbomachinery courses around the world with a powerful tool to assign gas turbine components as project and individual modules that are integrated into a complete system. Quoting many statements by the gas turbine industry professionals, the young engineers graduated from the turbomachinery courses offered by the author, had the competency of engineers equivalent to three to four years of industrial experience.

Newly revised, this new fifth edition includes a chapter on waste heat recovery and discusses this technology in detail including a the advantages and barriers to waste heat recovery, environmental restraints,

Newly revised, this new fifth edition includes a chapter on waste heat recovery and discusses this technology in detail including a the advantages and barriers to waste heat recovery, environmental restraints thermodynamics of heat recovery, fluid properties, boiler, condensers, steam turbines, off design behavior and exhaust catalyst. This book shows how microturbine designs rely heavily on the centrifugal compressor and are, in many aspects, similar to the early flight engines and will illustrate how the approach of the microturbine designer is to minimize cost.

Industrial Gas Turbines: Performance and Operability explains important aspects of gas turbine performance such as performance deterioration, service life and engine emissions. Traditionally, gas turbine performance has been taught from a design perspective with insufficient attention paid to the operational issues of a specific site. Operators are not always sufficiently familiar with engine performance issues to resolve operational problems and optimise performance. Industrial Gas Turbines: Performance and Operability discusses the key factors determining the performance of compressors, turbines, combustion and engine controls. An accompanying engine simulator CD illustrates gas turbine performance from the perspective of the operator, building on the concepts discussed in the text. The simulator is effectively a virtual engine and can be subjected to operating conditions that would be dangerous and damaging to an engine in real-life conditions. It also deals with issues of engine deterioration, emissions and turbine life. The combined use of text and simulators is designed to allow the reader to better understand and optimise gas turbine operation. Discusses the key factors in determining the performance of compressors, turbines, combustion and engine controls Explains important aspects of gas and turbine performance such as service life and engine emissions Accompanied by CD illustrating gas turbine performance, building on the concepts discussed in the text

This fourth edition of a bestseller provides a fundamental understanding of the operation and proper application of all types of gas turbines. The book explores the full spectrum of gas turbine hardware, typical application scenarios, and operating parameters, controls, inlet treatments, inspection, troubleshooting, and more. It includes a new chapter on gas turbine acoustics and noise control and an expanded section on the use of inlet cooling for power augmentation and NOx control. The author emphasizes strategies that help readers avoid problems before they occur and includes tips on how to diagnose problems in their early stages and analyze failures to prevent their recurrence.

This book offers gas turbine users and manufacturers a valuable resource to help them sort through issues associated with combustion instabilities. In the last ten years, substantial efforts have been made in the industrial, governmental, and academic communities to understand the unique issues associated with combustion instabilities in low-emission gas turbines. The objective of this book is to compile these results into a series of chapters that address the various facets of the problem. The Case Studies section speaks to specific manufacturer and user experiences with combustion instabilities in the development stage and in fielded turbine engines. The book then goes on to examine The Fundamental Mechanisms, The Combustor Modeling, and Control Approaches.

This comprehensive, best-selling reference provides the fundamental information you'll need to understand both the operation and proper application of all types of gas turbines. The full spectrum of hardware, as well as typical application scenarios are fully explored, along with operating parameters, controls, inlet treatments, inspection, troubleshooting, and more. The second edition adds a new chapter on gas turbine noise control, as well as an expanded section on use of inlet cooling for power augmentation and NOx control. The author has provided many helpful tips that will enable diagnosis of problems in their early stages and analysis of failures to prevent their recurrence. Also treated are the effects of the external environment on gas turbine operation and life, as well as the impact of the gas turbine on its surrounding environment.

A vital resource for pilots, instructors, and students, from the most trusted source of aeronautic information.

Combined Heat and Power Generation is a concise, up-to-date and accessible guide to the combined delivery of heat and power to anything, from a single home to a municipal power plant. Breeze discusses the historical background for CHP and why it is set to be a key emission control strategy for the 21st Century. Various technologies such as piston engines, gas turbines and fuel cells are discussed. Economic and environmental factors also are considered and analyzed, making this a very valuable resource for those involved with the research, design, implementation and management of the provision of heat and power. Discusses the historical background of combined heat and power usage and why CHP is seen as a key emission control strategy for the 21st Century Explores the technological aspects of CHP in a clear and concise style and delves into various key technologies, such as piston engines, steam and gas turbines and fuel cells Evaluates the economic factors of CHP and the installation of generation systems, along with energy conversion efficiencies

The development of clean, sustainable energy systems is one of the preeminent issues of our time. Most projections indicate that combustion-based energy conversion systems will continue to be the predominant approach for the majority of our energy usage, and gas turbines will continue to be important combustion-based energy conversion devices for many decades to come, used for aircraft propulsion, ground-based power generation, and mechanical-drive applications. This book compiles the key scientific and technological knowledge associated with gas turbine emissions into a single authoritative source. The book has three sections: the first section reviews major issues with gas turbine combustion, including design approaches and constraints, within the context of emissions. The second section addresses fundamental issues associated with pollutant formation, modeling, and prediction. The third section features case studies from manufacturers and technology developers, emphasizing the system-level and practical issues that must be addressed in developing different types of gas turbines that emit pollutants at acceptable levels.

Aircraft Engines and Gas Turbines is widely used as a text in the United States and abroad, and has also become a standard reference for professionals in the aircraft engine industry. Unique in treating the engine as a complete system at increasing levels of sophistication, it covers all types of modern aircraft engines, including turbojets, turbofans, and turboprops, and also discusses hypersonic propulsion systems of the future. Performance is described in terms of the fluid dynamic and thermodynamic limits on the behavior of the principal components: inlets, compressors, combustors, turbines, and nozzles. Environmental factors such as atmospheric pollution and noise are treated along with performance. This new edition has been substantially revised to include more complete and up-to-date coverage of compressors, turbines, and combustion systems, and to introduce current research directions. The discussion of high-bypass turbofans has been expanded in keeping with their great commercial importance. Propulsion for civil supersonic transports is taken up in the current context. The chapter on hypersonic air breathing engines has been expanded to reflect interest in the use of scramjets to power the National Aerospace Plane. The discussion of exhaust emissions and noise and associated regulatory structures have been updated and there are many corrections and clarifications.

This book covers the design, analysis, and optimization of the cleanest, most efficient fossil fuel-fired electric power generation technology at present and in the foreseeable future. The book contains a wealth of first principles-based calculation methods comprising key formulae, charts, rules of thumb, and other tools developed by the author over the course of 25+ years spent in the power generation industry. It is focused exclusively on actual power plant systems and actual field and/or rating data providing a comprehensive picture of the gas turbine combined cycle technology from performance and cost perspectives. Material presented in this book is applicable for research and development studies in academia and government/industry laboratories, as well as practical, day-to-day problems encountered in the industry (including OEMs, consulting engineers and plant operators).

The second edition of a comprehensive textbook that introduces turbomachinery and gas turbines through design methods and examples. This comprehensive textbook is unique in its design-focused approach to turbomachinery and gas turbines. It offers students and practicing engineers methods for configuring these machines to perform with the highest possible efficiency. Examples and problems are based on the actual design of turbomachinery and turbines. After an introductory chapter that outlines the goals of the book and provides definitions of terms and parts, the book offers a brief review of the basic principles of thermodynamics and efficiency definitions. The rest of the book is devoted to the analysis and design of real turbomachinery configurations and gas turbines, based on a consistent application of thermodynamic theory and a more empirical treatment of fluid dynamics that relies on the extensive use of design charts. Topics include turbine power cycles, diffusion and diffusers, the analysis and design of three-dimensional free-stream flow, and combustion systems and combustion calculations. The second edition updates every chapter, adding material on subjects that include flow correlations, energy transfer in turbomachines, and three-dimensional design. A solutions manual is available for instructors. This new MIT Press edition makes a popular text available again, with corrections and some updates, to a wide audience of students, professors, and professionals.

Aircraft Propulsion and Gas Turbine Engines, Second Edition builds upon the success of the book's first edition, with the addition of three major topic areas: Piston Engines with integrated propeller coverage; Pump Technologies; and Rocket Propulsion. The rocket propulsion section extends the text's coverage so that both Aerospace and Aeronautical topics can be studied and compared. Numerous updates have been made to reflect the latest advances in turbine engines, fuels, and combustion. The text is now divided into three parts, the first two devoted to air breathing engines, and the third covering non-air breathing or rocket engines.

Copyright: 91ecadeb915e1bf89479d8e99432546f